
1

Argonne National Laboratory

Introduction to
Parallel

Programming

Part 2: Advanced Concepts

2

Jazz LCRC

Presentation Plan

 Advanced MPI Topics
 Parallel I/O
 One sided communication

 Brief introduction to PETSc library with a
CFD example run on thousands of
processors

3

Jazz LCRC

MPI-1
 MPI is a message-passing library interface standard.

 Specification, not implementation
 Library, not a language
 Classical message-passing programming model

 MPI was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
 2-year intensive process

 Implementations appeared quickly and now MPI is
taken for granted as vendor-supported software on
any parallel machine.

 Free, portable implementations exist for clusters
(MPICH, LAM, OpenMPI) and other environments
(MPICH)

4

Jazz LCRC

MPI-2
 Same process of definition by MPI Forum
 MPI-2 is an extension of MPI

 Extends the message-passing model.
 Parallel I/O
 Remote memory operations (one-sided)
 Dynamic process management

 Adds other functionality
 C++ and Fortran 90 bindings

 similar to original C and Fortran-77 bindings

 Language interoperability
 MPI interaction with threads

2

5

Jazz LCRC

MPI-2 Implementation Status

 Most parallel computer vendors now
support MPI-2 on their machines
 Except in some cases for the dynamic

process management functions, which
require interaction with other system
software

 Cluster MPIs, such as MPICH2 and
LAM, support most of MPI-2 including
dynamic process management

6

Jazz LCRC

Parallel I/O

7

Jazz LCRC

What does Parallel I/O Mean?

 At the program level:
 Concurrent reads or writes from

multiple processes to a common file
 At the system level:

 A parallel file system and hardware
that support such concurrent access

8

Jazz LCRC

Why MPI is a Good Setting
for Parallel I/O

 Writing is like sending and reading is like
receiving.

 Any parallel I/O system will need:
 collective operations
 user-defined datatypes to describe both memory and

file layout
 communicators to separate application-level message

passing from I/O-related message passing
 non-blocking operations

 lots of MPI-like machinery

3

9

Jazz LCRC

Collective I/O and MPI
 A critical optimization in parallel I/O
 All processes (in the communicator) must call the collective I/O

function
 Allows communication of “big picture” to file system

 Framework for I/O optimizations at the MPI-IO layer
 Basic idea: build large blocks, so that reads/writes in I/O system

will be large
 Requests from different processes may be merged together
 Particularly effective when the accesses of different processes are

noncontiguous and interleaved

Small individual
requests

Large collective
access

10

Jazz LCRC

Collective I/O Functions
 MPI_File_write_at_all, etc.

 _all indicates that all processes in the group specified
by the communicator passed to MPI_File_open will
call this function

 _at indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearer
code than using a separate “seek” call

 Each process specifies only its own access
information — the argument list is the same as for
the non-collective functions

11

Jazz LCRC

The Other Collective I/O Calls

 MPI_File_seek
 MPI_File_read_all
 MPI_File_write_all
 MPI_File_read_at_all
 MPI_File_write_at_all
 MPI_File_read_ordered
 MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

12

Jazz LCRC

Example: Distributed Array Access

P0

P12

P4

P8

P2

P14

P6

P10

P1

P13

P5

P9

P3

P15

P7

P11

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P8 P9

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory
of a single process

P10 P11 P10

P15P13P12 P12 P13 P14P14

4

13

Jazz LCRC

Level-0 Access
 Each process makes one independent read request for each

row in the local array (as in Unix)

call MPI_File_open(..., file, ...,fh,ierr)
do i=1, n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read(fh, a(i,0),...,ierr)

enddo
call MPI_File_close(fh, ierr)

14

Jazz LCRC

Level-1 Access
 Similar to level 0, but each process uses collective I/O functions

 call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., fh, ierr)
do i=1,n_local_rows

call MPI_File_seek(fh, ..., ierr)
call MPI_File_read_all(fh, a(i,0), ...,&

 ierr)
enddo
call MPI_File_close(fh,ierr)

15

Jazz LCRC

Level-2 Access
 Each process creates a derived datatype to describe the

noncontiguous access pattern, defines a file view, and calls
independent I/O functions

 call MPI_Type_create_subarray(..., &
 subarray, ..., ierr)

call MPI_Type_commit(subarray, ierr)
 call MPI_File_open(..., file,..., fh, ierr)
 call MPI_File_set_view(fh, ..., subarray,&

 ..., ierr)
call MPI_File_read(fh, A, ..., ierr)
call MPI_File_close(fh, ierr)

16

Jazz LCRC

Level-3 Access
 Similar to level 2, except that each process uses collective I/O

functions

 call MPI_Type_create_subarray(..., &
 subarray, ierr)
call MPI_Type_commit(subarray, ierr)

 call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., fh, ierr)

 call MPI_File_set_view(fh, ..., subarray,&
..., ierr)

call MPI_File_read_all(fh, A, ..., ierr)
call MPI_File_close(fh,ierr)

5

17

Jazz LCRC

The Four Levels of Access

Fi
le

 S
pa

ce

Processes3210

Level 0

Level 1

Level 2

Level 3

18

Jazz LCRC

 Optimizations
 Given complete access information, an

implementation can perform optimizations
such as:
 Data Sieving: Read large chunks and extract what

is really needed
 Collective I/O: Merge requests of different

processes into larger requests
 Improved prefetching and caching

19

Jazz LCRC

Distributed Array Access: Read
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512
20

Jazz LCRC

Distributed Array Access: Write
Bandwidth

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512

6

21

Jazz LCRC

Portable File Formats
 Ad-hoc file formats

 Difficult to collaborate
 Cannot leverage post-processing tools

 MPI provides external32 data encoding
 High level I/O libraries

 netCDF and HDF5
 Better solutions than external32

 Define a “container” for data
 Describes contents
 May be queried (self-describing)

 Standard format for metadata about the file
 Wide range of post-processing tools available

22

Jazz LCRC

File Interoperability in MPI-IO
 Users can optionally create files with a portable binary

data representation
 “datarep” parameter to MPI_File_set_view
 native - default, same as in memory, not portable
 external32 - a specific representation defined in

MPI, (basically 32-bit big-endian IEEE format), portable
across machines and MPI implementations

 internal – implementation-defined representation
providing an implementation-defined level of
portability
 Not used by anyone we know of…

23

Jazz LCRC

Higher Level I/O Libraries
 Scientific applications work with structured

data and desire more self-describing file
formats

 netCDF and HDF5 are two popular “higher
level” I/O libraries
 Abstract away details of file layout
 Provide standard, portable file formats
 Include metadata describing contents

 For parallel machines, these should be built on
top of MPI-IO
 HDF5 has an MPI-IO option

 http://hdf.ncsa.uiuc.edu/HDF5/
24

Jazz LCRC

Parallel netCDF (PnetCDF)
 (Serial) netCDF

 API for accessing multi-dimensional
data sets

 Portable file format
 Popular in both fusion and climate

communities
 Parallel netCDF

 Very similar API to netCDF
 Tuned for better performance in today’s

computing environments
 Retains the file format so netCDF and

PnetCDF applications can share files
 PnetCDF builds on top of any MPI-IO

implementation

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM SP

7

25

Jazz LCRC

Exchanging Data with RMA

26

Jazz LCRC

Remote Memory Access in MPI-2
(also called One-Sided Operations)

 Goals of MPI-2 RMA Design
 Balancing efficiency and portability across a

wide class of architectures
 shared-memory multiprocessors
 NUMA architectures
 distributed-memory MPP’s, clusters
 Workstation networks

 Retaining “look and feel” of MPI-1
 Dealing with subtle memory behavior issues:

cache coherence, sequential consistency

27

Jazz LCRC

Mesh Communication
 Recall how we designed the parallel

implementation
 Determine source and destination data

 Do not need full generality of send/receive
 Each process can completely define what data needs to

be moved to itself, relative to each processes local mesh
 Each process can “get” data from its neighbors

 Alternately, each can define what data is needed by the
neighbor processes
 Each process can “put” data to its neighbors

28

Jazz LCRC

Remote Memory Access

 Separates data transfer from indication of
completion (synchronization)

 In message-passing, they are combined

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

8

29

Jazz LCRC

Remote Memory Access
Windows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

30

Jazz LCRC

Basic RMA Functions for
Communication

 MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
 Collective operation
 Creates window object

 MPI_Win_free deallocates window object

 MPI_Put moves data from local memory to remote memory
 MPI_Get retrieves data from remote memory into local memory
 MPI_Accumulate updates remote memory using local values
 Data movement operations are non-blocking
 Subsequent synchronization on window object needed to

ensure operation is complete

31

Jazz LCRC

Send vs. Put

 MPI_Put can be
much faster that
MPI Point-to-
point
 4 neighbor

exchange on SGI
Origin

MPI Put

MPI_Isend

32

Jazz LCRC

Advantages of RMA
Operations

 Can do multiple data transfers with a
single synchronization operation

 Some irregular communication patterns
can be more economically expressed

 Can be significantly faster than
send/receive on systems with hardware
support for remote memory access, such
as shared memory systems

9

33

Jazz LCRC

Irregular Communication
Patterns with RMA

 If communication pattern is not known
a priori, the send-recv model requires an
extra step to determine how many
sends-recvs to issue

 RMA, however, can handle it easily
because only the origin or target process
needs to issue the put or get call

 This makes dynamic communication
easier to code in RMA

34

Jazz LCRC

RMA Window Objects
MPI_Win_create(base, size, disp_unit,
info,

 comm, win)
 Exposes memory given by (base, size) to

RMA operations by other processes in comm
 win is window object used in RMA operations
 disp_unit scales displacements:

 1 (no scaling) or sizeof(type), where window is
an array of elements of type type

 Allows use of array indices
 Allows heterogeneity

35

Jazz LCRC

RMA Communication Calls
 MPI_Put - stores into remote memory

 MPI_Get - reads from remote memory

 MPI_Accumulate - updates remote memory

 All are non-blocking: data transfer is described, maybe
even initiated, but may continue after call returns

 Subsequent synchronization on window object is
needed to ensure operations are complete

36

Jazz LCRC

The Synchronization Issue

 Issue: Which value is retrieved?
 Some form of synchronization is required

between local load/stores and remote
get/put/accumulates

 MPI provides multiple forms

local
stores

MPI_Get

10

37

Jazz LCRC

Synchronization with Fence

Simplest methods for synchronizing on window objects:
 MPI_Win_fence - like barrier

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)
38

Jazz LCRC

PETSc
Portable Extensible Toolkit for

Scientific Computing
 http://www.mcs.anl.gov/petsc

39

Jazz LCRC

The Role of PETSc

 Developing parallel, non-trivial PDE
solvers that deliver high performance
is still difficult and requires months (or
even years) of concentrated effort.

 PETSc is a toolkit that can ease these
difficulties and reduce the
development time, but it is not a black-
box PDE solver nor a silver bullet.

40

Jazz LCRC

Overview of PETSc
(http://www.mcs.anl.gov/petsc)

 Gives relatively high-level expression to
preconditioned iterative linear solvers,
and Newton iterative methods

 Ports wherever MPI ports; committed to
progressive MPI tuning

 Permits great flexibility (through object-
oriented philosophy) for algorithmic
innovation

 Callable from FORTRAN77, C, and C++

11

41

Jazz LCRC

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

PETSc Structure
42

Jazz LCRC

What is not in PETSc?

 Higher level representations of PDEs
 Unstructured mesh generation and manipulation
 Discretizations

 Load balancing
 Sophisticated visualization capabilities
 Optimization and sensitivity

But PETSc does interface to external software that
provides some of this functionality.

PETSc Structure

43

Jazz LCRC

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control:
User Code/PETSc Library

44

Jazz LCRC

PETSc Objects

 Vectors
 Sequential and parallel

 Matrices
 Sequential and parallel

 Linear Solvers
 ksp, preconditioners

 Nonlinear Solvers
 Time integration

12

45

Jazz LCRC

Vectors

 What are PETSc vectors?
 Fundamental objects for storing field solutions,

right-hand sides, etc.
 Each process locally owns a subvector of

contiguously numbered global indices
 Create vectors via

 VecCreate(MPI_Comm,Vec *)
 MPI_Comm - processes that share the vector

 VecSetSizes(Vec, int, int)
 number of elements local to this process
 or total number of elements

 VecSetType(Vec,VecType)
 Where VecType is

 VEC_SEQ, VEC_MPI, or VEC_SHARED

 VecSetFromOptions(Vec) lets you set the type at
runtime

data
objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1

46

Jazz LCRC

Creating a Vector

Vec x;

int n;
…

PetscInit ialize(&arg c,&arg v, (char*) 0 ,help) ;
PetscOptionsGetInt(PETSC_ NULL,"-
n",&n,PETSC_ NULL) ;

…
VecCreate(PETSC_ COMM_ WORLD,&x) ;

VecSetSizes(x,PETSC_ DECIDE,n) ;
VecSetType(x,VEC_ MPI) ;

VecSetFromOptions(x) ;

Global size

PETSc determines local size

Use PETSc to get value from
command line

47

Jazz LCRC

How Can We Use a PETSc
Vector

 PETSc supports “data structure-neutral” objects
 distributed memory “shared nothing” model
 single processors and shared memory systems

 PETSc vector is a “handle” to the real vector
 Allows the vector to be distributed across many processes
 To access the elements of the vector, we cannot simply do

 for (i=0; i<n; i++) v[i] = i;
 We do not require that the programmer work only with the

“local” part of the vector; we permit operations, such as setting
an element of a vector, to be performed globally

48

Jazz LCRC

Vector Assembly

 A three step process
 Each process tells PETSc what values to set or add to a vector

component. Once all values provided,
 Begin communication between processes to ensure that values end

up where needed
 (allow other operations, such as some computation, to proceed)
 Complete the communication

 VecSetValues(Vec,…)
 number of entries to insert/add
 indices of entries
 values to add
 mode: [INSERT_VALUES,ADD_VALUES]

 VecAssemblyBegin(Vec)
 VecAssemblyEnd(Vec)

13

49

Jazz LCRC

Selected Vector Operations

50

Jazz LCRC

A Complete PETSc Program

include petscvec.h
int m ain(int argc,char **argv)
{
 Vec x;
 int n = 2 0 , ierr;
 PetscTruth f lg ;
 PetscScalar one = 1 .0 , dot;

 PetscInitialize(&argc,&argv,0 ,0) ;
 PetscOptionsGetInt(PETSC_ NULL,"-n",&n,PETSC_ NULL) ;
 VecCreate(PETSC_ COMM_ WORLD,&x) ;
 VecSetSizes(x,PETSC_ DECIDE,n) ;
 VecSetFromOptions(x) ;
 VecSet(&one,x) ;
 VecDot(x,x,&dot) ;
 PetscPrintf(PETSC_ COMM_ WORLD,"Vector leng th % dn",(int) dot) ;
 VecDestroy(x) ;
 PetscFinalize() ;
 return 0 ;
}

51

Jazz LCRC

Matrices
 What are PETSc matrices?

 Fundamental objects for storing linear operators (e.g., Jacobians)
 Create matrices via

 MatCreate(…,Mat *)
 MPI_Comm - processes that share the matrix
 number of local/global rows and columns

 MatSetType(Mat,MatType)
 where MatType is one of

 default sparse AIJ: MPIAIJ, SEQAIJ
 block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ
 symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
 block diagonal: MPIBDIAG, SEQBDIAG
 dense: MPIDENSE, SEQDENSE
 matrix-free
 etc.

 MatSetFromOptions(Mat) lets you set the MatType at runtime.
52

Jazz LCRC

Parallel Matrix Distribution

MatGetOwnershipRange(Mat A, int *rstart, int *rend)
 rstart: first locally owned row of global matrix
 rend -1: last locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4

14

53

Jazz LCRC

Matrix Assembly Example
With Parallel Assembly

Mat A;
int column[3], i, start, end,istart,iend;
double value[3];
…
MatCreate(PETSC_ COMM_ WORLD,
 PETSC_ DECIDE,PETSC_ DECIDE,n,n,& A);

MatSetFromOptions(A);

MatGetOwnershipRange(A,& start,& end);
/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

Choose the global
Size of the matrix

Let PETSc decide how
to allocate matrix
across processes

54

Jazz LCRC

Linear Solvers

 Krylov Methods
 Using PETSc linear algebra, just add:

 KSPSetOperators(), KSPSetRhs(),
KSPSetSolution()

 KSPSolve()
 Preconditioners must obey PETSc interface

 Basically just the KSP interface
 Can change solver dynamically from the

command line

55

Jazz LCRC

Nonlinear Solvers

 Using PETSc linear algebra, just add:
 SNESSetFunction(), SNESSetJacobian()
 SNESSolve()

 Can access subobjects
 SNESGetKSP()
 KSPGetPC()

 Can customize subobjects from the cmd line
 Could give –sub_pc_type ilu, which would set the

subdomain preconditioner to ILU

Integration
56

Jazz LCRC

Debugging

 -start_in_debugger [gdb,dbx,noxterm]
 -on_error_attach_debugger

[gb,dbx,noxterm]
 -on_error_abort
 -debugger_nodes 0,1
 -display machinename:0.0

Support for parallel debugging

When debugging, it is often useful to place
a breakpoint in the function PetscError().

debugging and errors

15

57

Jazz LCRC

Profiling and Performance
Tuning

 Integrated profiling using -log_summary
 User-defined events

 Profiling by stages of an application

Profiling:

Performance Tuning:

 Matrix optimizations

 Application optimizations
 Algorithmic tuning

58

Jazz LCRC

CFD Example: PETSc-FUN3D

 Based on “legacy” (but contemporary) NASA CFD
application, with significant F77 code reuse

 Portable, message-passing library-based parallelization,
runs on NT boxes through Tflop/s ASCI platforms

 Simple multithreaded extension (for SMP Clusters)
 Sparse, unstructured data, implying memory

indirection with only modest reuse
 Wide applicability to other implicitly discretized

multiple-scale PDE workloads — of interagency,
interdisciplinary interest

59

Jazz LCRC

Euler Simulation
 3D transonic flow over ONERA

M6 wing, at 3.06º angle of attack
(exhibits λ-shock at M = 0.839)

 Solve

 where

ρ = density, u = velocity, p =
pressure
E = energy density

60

Jazz LCRC

PETSc-FUN3D Code –
Parallelization Approach

 Follow the “owner computes” rule under the dual
constraints of minimizing the number of messages
and overlapping communication with computation

 Each processor “ghosts” its stencil dependences in
its neighbors

 Ghost nodes ordered after contiguous owned nodes
 Domain mapped from (user) global ordering into

local orderings
 Scatter/gather operations created between local

sequential vectors and global distributed vectors,
based on runtime connectivity patterns

16

61

Jazz LCRC

Different Orderings

62

Jazz LCRC

 Solving Unstructured Mesh
Problems in Serial

 makes them more memory intensive
 reduces the locality in data reference

patterns (which is required to get good
cache performance)

 needs high memory bandwidth since
cache lines might be loaded multiple times

 requires lot of integer operations that
make these solvers more susceptible to
run into operation issue limitations

63

Jazz LCRC

Solving Unstructured Grid
Problems in Parallel:

Main Issues
 SPMD parallelization of unstructured

grid solvers is complicated by the fact that
no two interprocessor data dependency
patterns are alike

 The user-provided global ordering may
be incompatible with the subdomain-
contiguous ordering required for high
performance and convenient SPMD
coding

64

Jazz LCRC

Time-Implicit Newton-Krylov-Schwarz (ΨNKS)
For nonlinear robustness, NKS iteration is wrapped in time-stepping

for (l = 0; l < n_time; l++) { # n_time ~ 50
select time step
for (k = 0; k < n_Newton; k++) { # n_Newton ~ 1
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) { # n_Krylov ~ 60
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop
} // End of time-step loop

17

65

Jazz LCRC

Primary PDE Solution Kernels
 Vertex-based loops

 state vector and auxiliary vector updates
 Edge-based “stencil op” loops

 residual evaluation
 approximate Jacobian evaluation
 Jacobian-vector product (often replaced with matrix-free form,

involving residual evaluation)
 Sparse, narrow-band recurrences

 approximate factorization and back substitution

 Vector inner products and norms
 orthogonalization/conjugation
 convergence progress and stability checks

66

Jazz LCRC

Algorithmic Tuning for NKS
Solver

 Continuation parameters: discretization order, initial
timestep, timestep evolution

 Newton parameters: convergence tolerance,
globalization strategy, Jacobian refresh frequency

 Krylov parameters: convergence tolerance, subspace
dimension, restart number, orthogonalization
mechanism

 Schwarz parameters: subdomain number, subdomain
solver, subdomain overlap, coarse grid usage

 Subproblem parameters: fill level, number of sweeps

67

Jazz LCRC

Sequential Performance of
PETSc-FUN3D

68

Jazz LCRC

Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

18

69

Jazz LCRC

Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

70

Jazz LCRC

BlueGene Per-Processor
Performance

 Insignificant loss in performance due to parallelism even for
strong scaling
 16% of peak on 128 processor vs. 14% on 2048 processors
 Machine mode changes from coprocessor to virtual node

 In the overall parallel performance, poor per-processor part is
the real “culprit” and not the scalability

71

Jazz LCRC

Conclusions

72

Jazz LCRC

Designing Parallel Programs
 Common theme – think about the “global”

object, then see how MPI can help you
 Solve a bigger problem
 Cut down the execution time

 Also specify the largest amount of
communication or I/O between
“synchronization points”
 Computation to communication ratio
 Collective and noncontiguous I/O
 Point to point vs. RMA

19

73

Jazz LCRC

MPI
 MPI is a proven, effective, portable parallel

programming model
 MPI has succeeded because

 rich features
 control on data placement (critical for performance)
 complex programs are no harder than easy ones
 open process for defining MPI led to a solid design

74

Jazz LCRC

PETSc Library

 PETSc provides scalable linear and
nonlinear solvers
 convenient algorithmic experimentation
 portable wherever MPI is available
 used in a variety of application areas

 From a performance standpoint, parallel
programming is easy but sequential
programming is difficult!

75

Jazz LCRC

Acknowledgements

 MPICH Team at MCS (Bill Gropp, Rusty
Lusk, and Rajeev Thakur in particular)

 PETSc Team and David Keyes
 LCRC Team (Susan Coghlan, John

Valdev, and Ray Bair)
 Computer time was provided by ANL for

Jazz, SDSC for TeraGrid, and Virginia
Tech for System X

